
1

Argonne National Laboratory

Introduction to
Parallel

Programming

Part 2: Advanced Concepts

2

Jazz LCRC

Presentation Plan

 Advanced MPI Topics
 Parallel I/O
 One sided communication

 Brief introduction to PETSc library with a
CFD example run on thousands of
processors

3

Jazz LCRC

MPI-1
 MPI is a message-passing library interface standard.

 Specification, not implementation
 Library, not a language
 Classical message-passing programming model

 MPI was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
 2-year intensive process

 Implementations appeared quickly and now MPI is
taken for granted as vendor-supported software on
any parallel machine.

 Free, portable implementations exist for clusters
(MPICH, LAM, OpenMPI) and other environments
(MPICH)

4

Jazz LCRC

MPI-2
 Same process of definition by MPI Forum
 MPI-2 is an extension of MPI

 Extends the message-passing model.
 Parallel I/O
 Remote memory operations (one-sided)
 Dynamic process management

 Adds other functionality
 C++ and Fortran 90 bindings

 similar to original C and Fortran-77 bindings

 Language interoperability
 MPI interaction with threads

2

5

Jazz LCRC

MPI-2 Implementation Status

 Most parallel computer vendors now
support MPI-2 on their machines
 Except in some cases for the dynamic

process management functions, which
require interaction with other system
software

 Cluster MPIs, such as MPICH2 and
LAM, support most of MPI-2 including
dynamic process management

6

Jazz LCRC

Parallel I/O

7

Jazz LCRC

What does Parallel I/O Mean?

 At the program level:
 Concurrent reads or writes from

multiple processes to a common file
 At the system level:

 A parallel file system and hardware
that support such concurrent access

8

Jazz LCRC

Why MPI is a Good Setting
for Parallel I/O

 Writing is like sending and reading is like
receiving.

 Any parallel I/O system will need:
 collective operations
 user-defined datatypes to describe both memory and

file layout
 communicators to separate application-level message

passing from I/O-related message passing
 non-blocking operations

 lots of MPI-like machinery

3

9

Jazz LCRC

Collective I/O and MPI
 A critical optimization in parallel I/O
 All processes (in the communicator) must call the collective I/O

function
 Allows communication of “big picture” to file system

 Framework for I/O optimizations at the MPI-IO layer
 Basic idea: build large blocks, so that reads/writes in I/O system

will be large
 Requests from different processes may be merged together
 Particularly effective when the accesses of different processes are

noncontiguous and interleaved

Small individual
requests

Large collective
access

10

Jazz LCRC

Collective I/O Functions
 MPI_File_write_at_all, etc.

 _all indicates that all processes in the group specified
by the communicator passed to MPI_File_open will
call this function

 _at indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearer
code than using a separate “seek” call

 Each process specifies only its own access
information — the argument list is the same as for
the non-collective functions

11

Jazz LCRC

The Other Collective I/O Calls

 MPI_File_seek
 MPI_File_read_all
 MPI_File_write_all
 MPI_File_read_at_all
 MPI_File_write_at_all
 MPI_File_read_ordered
 MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

12

Jazz LCRC

Example: Distributed Array Access

P0

P12

P4

P8

P2

P14

P6

P10

P1

P13

P5

P9

P3

P15

P7

P11

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P8 P9

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory
of a single process

P10 P11 P10

P15P13P12 P12 P13 P14P14

4

13

Jazz LCRC

Level-0 Access
 Each process makes one independent read request for each

row in the local array (as in Unix)

call MPI_File_open(..., file, ...,fh,ierr)
do i=1, n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read(fh, a(i,0),...,ierr)

enddo
call MPI_File_close(fh, ierr)

14

Jazz LCRC

Level-1 Access
 Similar to level 0, but each process uses collective I/O functions

 call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., fh, ierr)
do i=1,n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read_all(fh, a(i,0), ...,&

 ierr)
enddo
call MPI_File_close(fh,ierr)

15

Jazz LCRC

Level-2 Access
 Each process creates a derived datatype to describe the

noncontiguous access pattern, defines a file view, and calls
independent I/O functions

 call MPI_Type_create_subarray(..., &
 subarray, ..., ierr)

call MPI_Type_commit(subarray, ierr)
 call MPI_File_open(..., file,..., fh, ierr)
 call MPI_File_set_view(fh, ..., subarray,&

 ..., ierr)
call MPI_File_read(fh, A, ..., ierr)
call MPI_File_close(fh, ierr)

16

Jazz LCRC

Level-3 Access
 Similar to level 2, except that each process uses collective I/O

functions

 call MPI_Type_create_subarray(..., &
 subarray, ierr)
call MPI_Type_commit(subarray, ierr)

 call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., fh, ierr)

 call MPI_File_set_view(fh, ..., subarray,&
..., ierr)

call MPI_File_read_all(fh, A, ..., ierr)
call MPI_File_close(fh,ierr)

5

17

Jazz LCRC

The Four Levels of Access

Fi
le

 S
pa

ce

Processes3210

Level 0

Level 1

Level 2

Level 3

18

Jazz LCRC

 Optimizations
 Given complete access information, an

implementation can perform optimizations
such as:
 Data Sieving: Read large chunks and extract what

is really needed
 Collective I/O: Merge requests of different

processes into larger requests
 Improved prefetching and caching

19

Jazz LCRC

Distributed Array Access: Read
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512
20

Jazz LCRC

Distributed Array Access: Write
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512

6

21

Jazz LCRC

Portable File Formats
 Ad-hoc file formats

 Difficult to collaborate
 Cannot leverage post-processing tools

 MPI provides external32 data encoding
 High level I/O libraries

 netCDF and HDF5
 Better solutions than external32

 Define a “container” for data
 Describes contents
 May be queried (self-describing)

 Standard format for metadata about the file
 Wide range of post-processing tools available

22

Jazz LCRC

File Interoperability in MPI-IO
 Users can optionally create files with a portable binary

data representation
 “datarep” parameter to MPI_File_set_view
 native - default, same as in memory, not portable
 external32 - a specific representation defined in

MPI, (basically 32-bit big-endian IEEE format), portable
across machines and MPI implementations

 internal – implementation-defined representation
providing an implementation-defined level of
portability
 Not used by anyone we know of…

23

Jazz LCRC

Higher Level I/O Libraries
 Scientific applications work with structured

data and desire more self-describing file
formats

 netCDF and HDF5 are two popular “higher
level” I/O libraries
 Abstract away details of file layout
 Provide standard, portable file formats
 Include metadata describing contents

 For parallel machines, these should be built on
top of MPI-IO
 HDF5 has an MPI-IO option

 http://hdf.ncsa.uiuc.edu/HDF5/
24

Jazz LCRC

Parallel netCDF (PnetCDF)
 (Serial) netCDF

 API for accessing multi-dimensional
data sets

 Portable file format
 Popular in both fusion and climate

communities
 Parallel netCDF

 Very similar API to netCDF
 Tuned for better performance in today’s

computing environments
 Retains the file format so netCDF and

PnetCDF applications can share files
 PnetCDF builds on top of any MPI-IO

implementation

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM SP

7

25

Jazz LCRC

Exchanging Data with RMA

26

Jazz LCRC

Remote Memory Access in MPI-2
(also called One-Sided Operations)

 Goals of MPI-2 RMA Design
 Balancing efficiency and portability across a

wide class of architectures
 shared-memory multiprocessors
 NUMA architectures
 distributed-memory MPP’s, clusters
 Workstation networks

 Retaining “look and feel” of MPI-1
 Dealing with subtle memory behavior issues:

cache coherence, sequential consistency

27

Jazz LCRC

Mesh Communication
 Recall how we designed the parallel

implementation
 Determine source and destination data

 Do not need full generality of send/receive
 Each process can completely define what data needs to

be moved to itself, relative to each processes local mesh
 Each process can “get” data from its neighbors

 Alternately, each can define what data is needed by the
neighbor processes
 Each process can “put” data to its neighbors

28

Jazz LCRC

Remote Memory Access

 Separates data transfer from indication of
completion (synchronization)

 In message-passing, they are combined

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

8

29

Jazz LCRC

Remote Memory Access
Windows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

30

Jazz LCRC

Basic RMA Functions for
Communication

 MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
 Collective operation
 Creates window object

 MPI_Win_free deallocates window object

 MPI_Put moves data from local memory to remote memory
 MPI_Get retrieves data from remote memory into local memory
 MPI_Accumulate updates remote memory using local values
 Data movement operations are non-blocking
 Subsequent synchronization on window object needed to

ensure operation is complete

31

Jazz LCRC

Send vs. Put

 MPI_Put can be
much faster that
MPI Point-to-
point
 4 neighbor

exchange on SGI
Origin

MPI Put

MPI_Isend

32

Jazz LCRC

Advantages of RMA
Operations

 Can do multiple data transfers with a
single synchronization operation

 Some irregular communication patterns
can be more economically expressed

 Can be significantly faster than
send/receive on systems with hardware
support for remote memory access, such
as shared memory systems

9

33

Jazz LCRC

Irregular Communication
Patterns with RMA

 If communication pattern is not known
a priori, the send-recv model requires an
extra step to determine how many
sends-recvs to issue

 RMA, however, can handle it easily
because only the origin or target process
needs to issue the put or get call

 This makes dynamic communication
easier to code in RMA

34

Jazz LCRC

RMA Window Objects
MPI_Win_create(base, size, disp_unit,
info,

 comm, win)
 Exposes memory given by (base, size) to

RMA operations by other processes in comm
 win is window object used in RMA operations
 disp_unit scales displacements:

 1 (no scaling) or sizeof(type), where window is
an array of elements of type type

 Allows use of array indices
 Allows heterogeneity

35

Jazz LCRC

RMA Communication Calls
 MPI_Put - stores into remote memory

 MPI_Get - reads from remote memory

 MPI_Accumulate - updates remote memory

 All are non-blocking: data transfer is described, maybe
even initiated, but may continue after call returns

 Subsequent synchronization on window object is
needed to ensure operations are complete

36

Jazz LCRC

The Synchronization Issue

 Issue: Which value is retrieved?
 Some form of synchronization is required

between local load/stores and remote
get/put/accumulates

 MPI provides multiple forms

local
stores

MPI_Get

10

37

Jazz LCRC

Synchronization with Fence

Simplest methods for synchronizing on window objects:
 MPI_Win_fence - like barrier

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)
38

Jazz LCRC

PETSc
Portable Extensible Toolkit for

Scientific Computing
 http://www.mcs.anl.gov/petsc

39

Jazz LCRC

The Role of PETSc

 Developing parallel, non-trivial PDE
solvers that deliver high performance
is still difficult and requires months (or
even years) of concentrated effort.

 PETSc is a toolkit that can ease these
difficulties and reduce the
development time, but it is not a black-
box PDE solver nor a silver bullet.

40

Jazz LCRC

Overview of PETSc
(http://www.mcs.anl.gov/petsc)

 Gives relatively high-level expression to
preconditioned iterative linear solvers,
and Newton iterative methods

 Ports wherever MPI ports; committed to
progressive MPI tuning

 Permits great flexibility (through object-
oriented philosophy) for algorithmic
innovation

 Callable from FORTRAN77, C, and C++

11

41

Jazz LCRC

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

PETSc Structure
42

Jazz LCRC

What is not in PETSc?

 Higher level representations of PDEs
 Unstructured mesh generation and manipulation
 Discretizations

 Load balancing
 Sophisticated visualization capabilities
 Optimization and sensitivity

But PETSc does interface to external software that
provides some of this functionality.

PETSc Structure

43

Jazz LCRC

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control:
User Code/PETSc Library

44

Jazz LCRC

PETSc Objects

 Vectors
 Sequential and parallel

 Matrices
 Sequential and parallel

 Linear Solvers
 ksp, preconditioners

 Nonlinear Solvers
 Time integration

12

45

Jazz LCRC

Vectors

 What are PETSc vectors?
 Fundamental objects for storing field solutions,

right-hand sides, etc.
 Each process locally owns a subvector of

contiguously numbered global indices
 Create vectors via

 VecCreate(MPI_Comm,Vec *)
 MPI_Comm - processes that share the vector

 VecSetSizes(Vec, int, int)
 number of elements local to this process
 or total number of elements

 VecSetType(Vec,VecType)
 Where VecType is

 VEC_SEQ, VEC_MPI, or VEC_SHARED

 VecSetFromOptions(Vec) lets you set the type at
runtime

data
objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1

46

Jazz LCRC

Creating a Vector

Vec x;

int n;
…

PetscInit ialize(&arg c,&arg v, (char*) 0 ,help) ;
PetscOptionsGetInt(PETSC_ NULL,"-
n",&n,PETSC_ NULL) ;

…
VecCreate(PETSC_ COMM_ WORLD,&x) ;

VecSetSizes(x,PETSC_ DECIDE,n) ;
VecSetType(x,VEC_ MPI) ;

VecSetFromOptions(x) ;

Global size

PETSc determines local size

Use PETSc to get value from
command line

47

Jazz LCRC

How Can We Use a PETSc
Vector

 PETSc supports “data structure-neutral” objects
 distributed memory “shared nothing” model
 single processors and shared memory systems

 PETSc vector is a “handle” to the real vector
 Allows the vector to be distributed across many processes
 To access the elements of the vector, we cannot simply do

 for (i=0; i<n; i++) v[i] = i;
 We do not require that the programmer work only with the

“local” part of the vector; we permit operations, such as setting
an element of a vector, to be performed globally

48

Jazz LCRC

Vector Assembly

 A three step process
 Each process tells PETSc what values to set or add to a vector

component. Once all values provided,
 Begin communication between processes to ensure that values end

up where needed
 (allow other operations, such as some computation, to proceed)
 Complete the communication

 VecSetValues(Vec,…)
 number of entries to insert/add
 indices of entries
 values to add
 mode: [INSERT_VALUES,ADD_VALUES]

 VecAssemblyBegin(Vec)
 VecAssemblyEnd(Vec)

13

49

Jazz LCRC

Selected Vector Operations

50

Jazz LCRC

A Complete PETSc Program

include petscvec.h
int m ain(int argc,char **argv)
{
 Vec x;
 int n = 2 0 , ierr;
 PetscTruth f lg ;
 PetscScalar one = 1 .0 , dot;

 PetscInitialize(&argc,&argv,0 ,0) ;
 PetscOptionsGetInt(PETSC_ NULL,"-n",&n,PETSC_ NULL) ;
 VecCreate(PETSC_ COMM_ WORLD,&x) ;
 VecSetSizes(x,PETSC_ DECIDE,n) ;
 VecSetFromOptions(x) ;
 VecSet(&one,x) ;
 VecDot(x,x,&dot) ;
 PetscPrintf(PETSC_ COMM_ WORLD,"Vector leng th % dn",(int) dot) ;
 VecDestroy(x) ;
 PetscFinalize() ;
 return 0 ;
}

51

Jazz LCRC

Matrices
 What are PETSc matrices?

 Fundamental objects for storing linear operators (e.g., Jacobians)
 Create matrices via

 MatCreate(…,Mat *)
 MPI_Comm - processes that share the matrix
 number of local/global rows and columns

 MatSetType(Mat,MatType)
 where MatType is one of

 default sparse AIJ: MPIAIJ, SEQAIJ
 block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ
 symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
 block diagonal: MPIBDIAG, SEQBDIAG
 dense: MPIDENSE, SEQDENSE
 matrix-free
 etc.

 MatSetFromOptions(Mat) lets you set the MatType at runtime.
52

Jazz LCRC

Parallel Matrix Distribution

MatGetOwnershipRange(Mat A, int *rstart, int *rend)
 rstart: first locally owned row of global matrix
 rend -1: last locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4

14

53

Jazz LCRC

Matrix Assembly Example
With Parallel Assembly

Mat A;
int column[3], i, start, end,istart,iend;
double value[3];
…
MatCreate(PETSC_ COMM_ WORLD,
 PETSC_ DECIDE,PETSC_ DECIDE,n,n,& A);

MatSetFromOptions(A);

MatGetOwnershipRange(A,& start,& end);
/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

Choose the global
Size of the matrix

Let PETSc decide how
to allocate matrix
across processes

54

Jazz LCRC

Linear Solvers

 Krylov Methods
 Using PETSc linear algebra, just add:

 KSPSetOperators(), KSPSetRhs(),
KSPSetSolution()

 KSPSolve()
 Preconditioners must obey PETSc interface

 Basically just the KSP interface
 Can change solver dynamically from the

command line

55

Jazz LCRC

Nonlinear Solvers

 Using PETSc linear algebra, just add:
 SNESSetFunction(), SNESSetJacobian()
 SNESSolve()

 Can access subobjects
 SNESGetKSP()
 KSPGetPC()

 Can customize subobjects from the cmd line
 Could give –sub_pc_type ilu, which would set the

subdomain preconditioner to ILU

Integration
56

Jazz LCRC

Debugging

 -start_in_debugger [gdb,dbx,noxterm]
 -on_error_attach_debugger

[gb,dbx,noxterm]
 -on_error_abort
 -debugger_nodes 0,1
 -display machinename:0.0

Support for parallel debugging

When debugging, it is often useful to place
a breakpoint in the function PetscError().

debugging and errors

15

57

Jazz LCRC

Profiling and Performance
Tuning

 Integrated profiling using -log_summary
 User-defined events

 Profiling by stages of an application

Profiling:

Performance Tuning:

 Matrix optimizations

 Application optimizations
 Algorithmic tuning

58

Jazz LCRC

CFD Example: PETSc-FUN3D

 Based on “legacy” (but contemporary) NASA CFD
application, with significant F77 code reuse

 Portable, message-passing library-based parallelization,
runs on NT boxes through Tflop/s ASCI platforms

 Simple multithreaded extension (for SMP Clusters)
 Sparse, unstructured data, implying memory

indirection with only modest reuse
 Wide applicability to other implicitly discretized

multiple-scale PDE workloads — of interagency,
interdisciplinary interest

59

Jazz LCRC

Euler Simulation
 3D transonic flow over ONERA

M6 wing, at 3.06º angle of attack
(exhibits λ-shock at M = 0.839)

 Solve

 where

ρ = density, u = velocity, p =
pressure
E = energy density

60

Jazz LCRC

PETSc-FUN3D Code –
Parallelization Approach

 Follow the “owner computes” rule under the dual
constraints of minimizing the number of messages
and overlapping communication with computation

 Each processor “ghosts” its stencil dependences in
its neighbors

 Ghost nodes ordered after contiguous owned nodes
 Domain mapped from (user) global ordering into

local orderings
 Scatter/gather operations created between local

sequential vectors and global distributed vectors,
based on runtime connectivity patterns

16

61

Jazz LCRC

Different Orderings

62

Jazz LCRC

 Solving Unstructured Mesh
Problems in Serial

 makes them more memory intensive
 reduces the locality in data reference

patterns (which is required to get good
cache performance)

 needs high memory bandwidth since
cache lines might be loaded multiple times

 requires lot of integer operations that
make these solvers more susceptible to
run into operation issue limitations

63

Jazz LCRC

Solving Unstructured Grid
Problems in Parallel:

Main Issues
 SPMD parallelization of unstructured

grid solvers is complicated by the fact that
no two interprocessor data dependency
patterns are alike

 The user-provided global ordering may
be incompatible with the subdomain-
contiguous ordering required for high
performance and convenient SPMD
coding

64

Jazz LCRC

Time-Implicit Newton-Krylov-Schwarz (ΨNKS)
For nonlinear robustness, NKS iteration is wrapped in time-stepping

for (l = 0; l < n_time; l++) { # n_time ~ 50
select time step
for (k = 0; k < n_Newton; k++) { # n_Newton ~ 1
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) { # n_Krylov ~ 60
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop
} // End of time-step loop

17

65

Jazz LCRC

Primary PDE Solution Kernels
 Vertex-based loops

 state vector and auxiliary vector updates
 Edge-based “stencil op” loops

 residual evaluation
 approximate Jacobian evaluation
 Jacobian-vector product (often replaced with matrix-free form,

involving residual evaluation)
 Sparse, narrow-band recurrences

 approximate factorization and back substitution

 Vector inner products and norms
 orthogonalization/conjugation
 convergence progress and stability checks

66

Jazz LCRC

Algorithmic Tuning for NKS
Solver

 Continuation parameters: discretization order, initial
timestep, timestep evolution

 Newton parameters: convergence tolerance,
globalization strategy, Jacobian refresh frequency

 Krylov parameters: convergence tolerance, subspace
dimension, restart number, orthogonalization
mechanism

 Schwarz parameters: subdomain number, subdomain
solver, subdomain overlap, coarse grid usage

 Subproblem parameters: fill level, number of sweeps

67

Jazz LCRC

Sequential Performance of
PETSc-FUN3D

68

Jazz LCRC

Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

18

69

Jazz LCRC

Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

70

Jazz LCRC

BlueGene Per-Processor
Performance

 Insignificant loss in performance due to parallelism even for
strong scaling
 16% of peak on 128 processor vs. 14% on 2048 processors
 Machine mode changes from coprocessor to virtual node

 In the overall parallel performance, poor per-processor part is
the real “culprit” and not the scalability

71

Jazz LCRC

Conclusions

72

Jazz LCRC

Designing Parallel Programs
 Common theme – think about the “global”

object, then see how MPI can help you
 Solve a bigger problem
 Cut down the execution time

 Also specify the largest amount of
communication or I/O between
“synchronization points”
 Computation to communication ratio
 Collective and noncontiguous I/O
 Point to point vs. RMA

19

73

Jazz LCRC

MPI
 MPI is a proven, effective, portable parallel

programming model
 MPI has succeeded because

 rich features
 control on data placement (critical for performance)
 complex programs are no harder than easy ones
 open process for defining MPI led to a solid design

74

Jazz LCRC

PETSc Library

 PETSc provides scalable linear and
nonlinear solvers
 convenient algorithmic experimentation
 portable wherever MPI is available
 used in a variety of application areas

 From a performance standpoint, parallel
programming is easy but sequential
programming is difficult!

75

Jazz LCRC

Acknowledgements

 MPICH Team at MCS (Bill Gropp, Rusty
Lusk, and Rajeev Thakur in particular)

 PETSc Team and David Keyes
 LCRC Team (Susan Coghlan, John

Valdev, and Ray Bair)
 Computer time was provided by ANL for

Jazz, SDSC for TeraGrid, and Virginia
Tech for System X

